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We consider the nonlinear two-dimensional problem of steady 

POTOKE) 

Plow past a 

wing profile with a sharp leading edge in a bounded supersonic stream of 

isentropic gas. The boundaries of the stream are taken to be rectilinear 

and parallel, and the profile is placed unsymmetrically with respect to 

them. 

The solution is based on the use of the Legendre transformation, by 

means of which the eauations of gas motion are transformed into symmetric 

linear equations. Furthermore, a simple approximation is made to the 

Bernoulli integral, and the complete problem is reduced to the solution 

of a finite system of functional equations, the properties of which are 

studied in detail. On the basis of these properties, concrete calcula- 

tions are carried out for the aerodynamic force and moment acting on the 

airfoil. The results obtained indicate a considerable sensitivity of the 

solution to nonlinear effects in a bounded stream even at low angles of 

attack. 

The general equations of steady plane and irrotational motion of an 

isentropic gas have the form 
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where w is the velocity of the flow with components u and v along the 

(1) 

(2) 

axes, p - the density of the gas. y - the adiabatic exponent, a - the 

velocity of sound. and the index m denotes the properties of the undis- 

turbed flow, in which the pressure is p OD. 
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To linearize equations (1) we use the Legendre transformation 

‘p + $ + = Zu.e-ie _ 
C 
@‘t $Y) (2 = Z + iy, i = c-i- 

) 
(4) 

Here (b and $ are respectively the velocity potential and stream function, 
8 the angle of inclination of the velocity vector to the x-axis. and @ 
y the functions of the Legendre transformation. 

Substitution of (4) into (1) with consideration of relations (31 leads 
to the following linear symmetrical equations 

(.-I) 

where u and X are determined by the expressions 

where on the basis of (21 u is a function of hf. 

Henceforth we assume 

1 
-p2- = Al,” - 1 = tan-+tsan 

and according to (6) we obtain 

x2 == _ 
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With such a choice of K the first formula (81 gives an approximate 
expression for equation (2) such that the values of (2) and (8) together 
with their derivatives coincide at the point M = M_. In Fig. 1 the enact 
and approximate dependence of v on M, determined from (2) and (8) with 
y = 1.405, are shown by the solid and dashed lines respectively, We note 
that the existing ways of approximating the equation of state of the gas 
with the use of different kinds af general transformations f l-6 ] are 
very accurate, but the transformation to the physical plane is then made 
very complicated and the solution of the given problem encounters great 
difficulty. However, with the case considered here the transformation 
from the 06 to the ry-plane is determined on the basis of (4), (5) and 
(81 by means of the formulas 

(S cos 6 f ysin 0) ~05 a = (I+ (b + 0) -+- (1*2’ (c - 0) 
m 

(I~iilO-~ycosO)si~~n.- -ml (a -1. 0) -i- fI)z’ (0 - 0) 

where @,(a + 8) and Q2 (CT - 8) are arbitrary functions satisfying equa- 
tions (5) with K = const. 
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Fig. 1. Fig. 2. 

We now consider the boundary conditions. For x < 0 (Fig. 2) the super- 

sonic stream is undisturbed and consequently 

1.9 = z+_ for y=O, r<O, 

0 =0(2/L) on C, 

O=Ofory=bl, y=-bb2 
(W 

where 8(x/L) is a given function on the profile Co. 

The solution of the problem in the regions above and below the profile 

is carried out separately and in the same way. We therefore limit our- 

selves to consideration of the upper region only. 

From the condition 8 = 0 at y = bl we at once find that ml’(u) = 

@2’(a) + bl sin u. Satisfying conditions (10) completely gives 
n 

f. cos [a (to) - 0 (to)] - Tu siu [o (lo) - 0 (t,,)J = + 02’ [a (to) - 0 (t,)] 

lo cos [o (1”) + 8 (l,)] - (2h - 5”) sin [o (10) + 0 (lo)1 = +- 0)s’ b (h) + 0 (lo)] (11) 

where y(t,) Is the equation of the upper part of the profile. 

In particular, with [I = = in the second equation (11) we find the 

relation 

0 (1,) + u (to) T boD (12) 

which determines the Prandtl-Meyer solution for an unbounded supersonic 
stream. 
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To solve equation (11) in the general case we introduce the auxiliary 

variable tl, determined by the condition 

0 (G + 6 (lo) = q (11) - e (11) (13) 

Then the function az’ is eliminated from equation (11) and we obtain 

tl = to - (2G - v. - vl) tan Iq (to) + 13 (t0)L T’I = 50 (&I) (‘4) 

Expressions (13) and (14) are equations for the determination of u. 

The general solution of these equations can be obtained by means of a 

method of successive approximations. using (12) as the zero approximation: 

a0 (fl) + 0 (h) = am, ap (lo) + 0 (to) = Op_i (h) - f3 (tl) (p = 1,2, . . ,) (15) 

As a result we obtain 

0 (t”) = 0, - 4 (to) - 2 i e (tli) (1’3) 
k=l 

where tp is related to tPl by formula (14). that is 

tJj y- tp-l - (a:, - vI,+ - TV,) tan [c (I~_~) + 6 (1,_,)1 (TV = ~~ (t,), P = 1,2, . . .) (17) 

Let the quantity u be eliminated by joint considerations of (13) and 

(14). i.e. ti(tq) = Cto, where C is a certain functional operator; then 

from (17) we have that tp(tO) = @to. Consequently the sequence of values 

t satisfies the condition tp(to) = GP-ktk(t,,), 

VP 

since tk( tq) = Ck tu. 

sing this and substituting (16) into (17). we find 

fp - tp--1 -(X---T~_~-~~) tan[am-2jP6(fk)] (p = 1,2, . . .) (18) 

We consider the values 0 < (tk) + 8( tk) < n/2 (k = 0, 1, . . .) for 

0 < t,, < 1; then from (17) we obtain (B = min tan (o + 8) ) 

$, G $I--1 - (2<1 -- TP_-l - TV) ,,L, ‘p<tIp--l (p=: 1, 2, . . .) (1% 

The sequence of values tp thus decreases with increasing p. Therefore, 

for p > n we obtain tp < 0 (8( tp) = 0) and the series in (16) and (16) are 

transformed into the finite sums* 

* The connection between equations (20) and (21) (determination of direct 

and reflected waves, points of reflection of characteristics, and so 
on) was studied in detail by Khomenko and applied to the investigation 

of the motion of a ship in a shallow-water canal. 
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To solve equation (20) we pick a positive integer n, for which we find 

the point of reflection of the characteristic on the profile and the 

interval of the velocities (a,) corresponding to the given n. Then the 

values t D are determined from (20) in the form of a sequence, namely 
t 
ti2 

t ’ etc. to tq n-l’ = t()(t,). We determine the pressure distribution on 

profile from the equation of state 

and we can thus find 

1, -: pm~‘i := p_tanYc,cotYa(~J (22) 

the integrated values of aerodynamic force and of 

1 f,,_., I’ 
- (2;, - rr__, - 7,‘) tan 1 (p = 1,2, . . , !I) (20) 

6 -p 

moment with respect to the leading edge of the profile. In particular. 

for a flat plate placed at an angle of attack 8 = const the dimensionless 

coefficients of lift and moment are determined in the form 

where L1 is the width of the plate and P and a the lift and moment. 

In the case just considered, of a flat plate, ro = - to tan 8 and use 

of (20)-(23) leads to integrated expressions such that o(tu1 is constant 
between two neighboring points of reflection of characteristics and 

undergoes a jump In passing through these points. We compare the results 
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obtained from nonlinear theory with those of linearized theory. In the 

linear case 8 and r 8 assume small values and equation (20) simplifies. 

We have 

Simplifying 

taking account 

tp = to - 2PL tan 6, 

the expression (22) to 

of (21). (31. and (71, 

(p = 1, . . . , n) (24) 

the first order of small quantities, 

we obtain 

11 

p = p, -t pmucn ? 
I/dl,“-_1 

[e (to) + 2 2 8 (tJ 1 
kc_1 

(25) 

If we perform the linearization on equations (1) and (21, we obtain 

just the same expressions (24) and (25) (see, for example [7 11. 

In Figs. 3-5 is shorn the dependence of cp, cI and lo = c,/cp on g, 

for 8 = 0.1 rad. 5, = bZ/L = 0.3 calculated from formula (23) (solid line) 

and according to linearized theory (dashed 1 ine). 

Fig. 4. Fig. 5. 

t \ i I I 

In the example considered, the lower limit for M is represented by the 

dot-dash line in Fig. 1. Beginning with this value, we have good agree- 

ment between formulas (2) and (8). From a comparison of the values in 

Figs. 3-5 it is evident that the solution of the problem possesses a 

strong sensitivity to nonlinear effects in a bounded stream and that the 

values of e and c of nonlinear theory significantly exceed the values 

from linearfzed th:ory even at small angles of attack. 

This method permits calculation of the aerodynamic characteristics of 

a profile in a supersonic stream near the surface of the earth. 
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